3.619 \(\int \frac{1}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=244 \[ -\frac{b \left (4 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{a^3 d \left (a^2-b^2\right )}+\frac{b^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}+\frac{\left (2 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d \left (a^2-b^2\right )}+\frac{b^2 \left (5 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^3 d (a-b) (a+b)^2} \]

[Out]

((2*a^2 - 3*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*(a^2 - b^2)*d) - (b*(4*
a^2 - 3*b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^3*(a^2 - b^2)*d) + (b^2*(5*a^
2 - 3*b^2)*Sqrt[Cos[c + d*x]]*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^3*(a - b)*(a +
b)^2*d) + (b^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Sec[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.439661, antiderivative size = 244, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.348, Rules used = {3847, 4106, 3849, 2805, 3787, 3771, 2639, 2641} \[ \frac{b^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac{b \left (4 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^3 d \left (a^2-b^2\right )}+\frac{\left (2 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d \left (a^2-b^2\right )}+\frac{b^2 \left (5 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^3 d (a-b) (a+b)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^2),x]

[Out]

((2*a^2 - 3*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*(a^2 - b^2)*d) - (b*(4*
a^2 - 3*b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^3*(a^2 - b^2)*d) + (b^2*(5*a^
2 - 3*b^2)*Sqrt[Cos[c + d*x]]*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^3*(a - b)*(a +
b)^2*d) + (b^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Sec[c + d*x]))

Rule 3847

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b^2*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*(m + 1)*(a^2 - b^2)), x] + Dist[1/(a*(m + 1)
*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a^2*(m + 1) - b^2*(m + n + 1) - a*b*(m + 1
)*Csc[e + f*x] + b^2*(m + n + 2)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0]
&& LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 4106

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))^2} \, dx &=\frac{b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac{\int \frac{-a^2+\frac{3 b^2}{2}+a b \sec (c+d x)-\frac{1}{2} b^2 \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} (a+b \sec (c+d x))} \, dx}{a \left (a^2-b^2\right )}\\ &=\frac{b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}-\frac{\int \frac{a \left (-a^2+\frac{3 b^2}{2}\right )-\left (-a^2 b+b \left (-a^2+\frac{3 b^2}{2}\right )\right ) \sec (c+d x)}{\sqrt{\sec (c+d x)}} \, dx}{a^3 \left (a^2-b^2\right )}+\frac{\left (b^2 \left (5 a^2-3 b^2\right )\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )}\\ &=\frac{b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac{\left (2 a^2-3 b^2\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx}{2 a^2 \left (a^2-b^2\right )}-\frac{\left (b \left (4 a^2-3 b^2\right )\right ) \int \sqrt{\sec (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )}+\frac{\left (b^2 \left (5 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{2 a^3 \left (a^2-b^2\right )}\\ &=\frac{b^2 \left (5 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a^3 (a-b) (a+b)^2 d}+\frac{b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}+\frac{\left (\left (2 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )}-\frac{\left (b \left (4 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{2 a^3 \left (a^2-b^2\right )}\\ &=\frac{\left (2 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a^2 \left (a^2-b^2\right ) d}-\frac{b \left (4 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a^3 \left (a^2-b^2\right ) d}+\frac{b^2 \left (5 a^2-3 b^2\right ) \sqrt{\cos (c+d x)} \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a^3 (a-b) (a+b)^2 d}+\frac{b^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))}\\ \end{align*}

Mathematica [A]  time = 6.40575, size = 323, normalized size = 1.32 \[ \frac{\frac{2 \cot (c+d x) \left (2 a \left (2 a^2+a b-3 b^2\right ) \sqrt{-\tan ^2(c+d x)} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right ),-1\right )-2 a \left (2 a^2-3 b^2\right ) \sqrt{-\tan ^2(c+d x)} E\left (\left .\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right |-1\right )+10 a^2 b \sqrt{-\tan ^2(c+d x)} \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right |-1\right )+2 a^3 \sec ^{\frac{3}{2}}(c+d x)-2 a^3 \cos (2 (c+d x)) \sec ^{\frac{3}{2}}(c+d x)-3 a b^2 \sec ^{\frac{3}{2}}(c+d x)+3 a b^2 \cos (2 (c+d x)) \sec ^{\frac{3}{2}}(c+d x)-6 b^3 \sqrt{-\tan ^2(c+d x)} \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right |-1\right )\right )}{a^3 (a-b) (a+b)}+\frac{4 b^2 \sin (c+d x)}{a \left (a^2-b^2\right ) \sqrt{\sec (c+d x)} (a \cos (c+d x)+b)}}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^2),x]

[Out]

((4*b^2*Sin[c + d*x])/(a*(a^2 - b^2)*(b + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]]) + (2*Cot[c + d*x]*(2*a^3*Sec[c +
 d*x]^(3/2) - 3*a*b^2*Sec[c + d*x]^(3/2) - 2*a^3*Cos[2*(c + d*x)]*Sec[c + d*x]^(3/2) + 3*a*b^2*Cos[2*(c + d*x)
]*Sec[c + d*x]^(3/2) - 2*a*(2*a^2 - 3*b^2)*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 2
*a*(2*a^2 + a*b - 3*b^2)*EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 10*a^2*b*EllipticPi
[-(b/a), -ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] - 6*b^3*EllipticPi[-(b/a), -ArcSin[Sqrt[Sec[c
+ d*x]]], -1]*Sqrt[-Tan[c + d*x]^2]))/(a^3*(a - b)*(a + b)))/(4*d)

________________________________________________________________________________________

Maple [B]  time = 4.456, size = 809, normalized size = 3.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sec(d*x+c))^2/sec(d*x+c)^(1/2),x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/a^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)
^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*b*EllipticF(cos(1/2*d*x+1/2*c),2^(1
/2))+a*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-6/a^2*b^2/(a^2-a*b)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b
),2^(1/2))-2/a^3*b^3*(a^2/b/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/
(2*cos(1/2*d*x+1/2*c)^2*a-a+b)-1/2/(a+b)/b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*
sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*a/b/(a^2-b^2)*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/2*a/b/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2
+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-1/2/b/(a^
2-b^2)/(a^2-a*b)*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+s
in(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))+3/2*b/(a^2-b^2)/(a^2-a*b)*a*(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*
EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{2} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \sec{\left (c + d x \right )}\right )^{2} \sqrt{\sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))**2/sec(d*x+c)**(1/2),x)

[Out]

Integral(1/((a + b*sec(c + d*x))**2*sqrt(sec(c + d*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{2} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sec(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)